Cette nouvelle batterie sodium-ion, mise au point par le professeur Jeung Ku Kang et son équipe du département de science et d'ingénierie des matériaux, pourrait changer la donne en matière de technologie de stockage de l'énergie. Le sodium, l'élément utilisé dans ces batteries, est plus de 500 fois plus abondant que le lithium, qui est actuellement utilisé dans la plupart des batteries rechargeables.
Malgré l'abondance du sodium, les batteries sodium-ion sont confrontées à des problèmes tels qu'une faible puissance de sortie et des temps de charge lents. Mais cette dernière innovation de l'équipe du professeur Kang au KAIST pourrait changer la donne. La recherche, à laquelle participent les doctorants Jong Hui Choi et Dong Won Kim du KAIST, a été publiée dans la revue Energy Storage Materials. Leur article décrit comment ils ont construit une batterie qui non seulement se charge rapidement, mais qui contient également beaucoup d'énergie.
La clé du succès réside dans la combinaison de deux types de matériaux traditionnellement utilisés séparément dans les batteries et les super-condensateurs. En mélangeant ces matériaux, l'équipe a créé un système hybride qui bénéficie du stockage d'énergie élevé des batteries et des capacités de charge et de décharge rapides des super-condensateurs.
Ce système hybride utilise un nouveau type d'anode (le côté négatif de la batterie) fabriquée à partir d'un sulfure de fer conducteur multivalent à faible cristallinité, intégré dans du carbone poreux dopé au soufre. La cathode (côté positif) est constituée d'un matériau dopé à l'oxygène à surface élevée. Ensemble, ces innovations permettent à la batterie de se charger rapidement tout en conservant une densité d'énergie élevée - une mesure de la quantité d'énergie qu'une batterie peut stocker.
Cette nouvelle technologie de batterie pourrait avoir un impact significatif sur plusieurs secteurs. Par exemple, les véhicules électriques équipés de ces batteries pourraient se recharger en quelques secondes seulement, soit à peu près le temps qu'il faut pour faire le plein d'un réservoir d'essence. De même, les téléphones portables et autres appareils intelligents pourraient passer beaucoup moins de temps attachés à un chargeur.
L'équipe du professeur Kang a démontré que sa nouvelle batterie sodium-ion peut surpasser les batteries lithium-ion traditionnelles en termes de densité énergétique et de densité de puissance. Plus précisément, leur batterie atteint une densité énergétique de 247 wattheures par kilogramme (Wh/kg) et une densité de puissance stupéfiante de 34 748 watts par kilogramme (W/kg).
Ces résultats impressionnants suggèrent que les batteries sodium-ion pourraient bientôt constituer une solution plus efficace et plus rentable pour le stockage de l'énergie. Avec un potentiel aussi prometteur, cette technologie pourrait bientôt trouver sa place dans toute une série d'applications, de l'électronique quotidienne aux technologies aérospatiales de pointe. L'avenir du chargement pourrait n'être qu'à quelques secondes, grâce à ce développement passionnant de la technologie des batteries.
De nouvelles batteries sodium-ion qui pourraient se charger en quelques secondes
Les accumulateurs d'énergie hybrides sodium-ion (SIHES) sont des accumulateurs d'énergie électrochimique prometteurs pour de nombreuses applications, mais leurs faibles densités d'énergie et de puissance doivent encore être surmontées. La recherche présente une stratégie permettant de réaliser des SIHES à très haute densité énergétique et à recharge rapide.
Des matériaux anodiques ultrafins à base de sulfure de fer et de carbone/graphène dopé au S (FS/C/G) sont synthétisés à partir d'hétéro-structures d'oxyde de graphène et de cadre métal-organique (MOF) à base de fer, via la formation et la sulfuration de carbone graphitique. Les analyses Operando et ex-situ révèlent que les sulfures de fer cyclés sont redimensionnés en fragments conducteurs de faible cristallinité avec des vides de Fe et des états Fe2+/Fe3+ multivalents.
La réduction de la taille des fragments à l'intérieur d'une structure poreuse 3D de carbone graphitique riche en N dopé au S induit des performances de FS/C/G à haute capacité et à haut débit. En outre, des matériaux cathodiques poreux 3D en carbone dopé O sont synthétisés à partir de structures zéolitiques d'imidazolate (ZIF) via des formations de micropores assistées par pyrolyse et de mésopores assistées par KOH.
Ce carbone poreux dérivé de ZIF (ZDPC) présente une surface ∼20 fois plus élevée (3972 m2/g) que les ZDC conventionnels, des micropores induits par l'O et des sites riches en N pour une capacité élevée, des défauts/mésopores accessibles aux ions induits par les hétéroatomes et des réseaux de carbone graphitique conducteurs riches en N. En outre, le FS/C/G/ZDPC a été synthétisé à partir de cadres zéolithiques d'imidazolate (ZIF).
En outre, le SHHES FS/C/G/ZDPC bénéficie de réactions capacitives et contrôlées par diffusion, comme le démontrent sa densité énergétique de 247 Wh kg-1, la plus élevée à ce jour, qui surpasse celle des SIHES de pointe, sa densité de puissance rechargeable rapidement (jusqu'à 34 748 W kg-1), qui dépasse de plus de 100 fois les réactions de type batterie, et sa stabilité cyclique avec une efficacité coulombienne de ∼100 % sur 5 000 cycles de charge-décharge.
Conclusion
En résumé, les chercheurs ont synthétisé des cadres de carbone graphitique poreux 3D dopés S et dopés O riches en N comme matériaux d'anode et de cathode pour des SIHES à haute performance. Tout d'abord, les hétéro-structures FS/C/G ont été dérivées en tant que matériau d'anode à haute capacité à partir des hétéro-structures MIL-100(Fe)/GO via la formation de carbone graphitique et la sulfuration assistée par échange d'anions. Les analyses Operando XRD, HRTEM et XPS ont révélé que les sulfures de fer cycliques ont été redimensionnés en sulfure de fer conducteur multivalent à faible cristallinité.
Source : Professeur Jeung Ku Kang et son équipe du département de science et d'ingénierie des matériaux
Et vous ?
Pensez-vous que cette étude est crédible ou pertinente ?
Quel est votre avis sur le sujet ?
Voir aussi :
Des chercheurs ont mis au point une nouvelle batterie à base de sel marin qui aurait une capacité 4 fois supérieure à celle du lithium. Elle aurait également moins d'impact sur l'environnement
CATL, le plus grand fabricant de batteries fait une percée majeure dans la densité énergétique des batteries qui atteindrait maintenant les 500 Wh/kg. CATL compte entamer leur production cette année
La société chinoise Betavolt annonce une batterie nucléaire révolutionnaire d'une durée de vie de 50 ans : destinée à l'aérospatiale, à l'IA, au secteur médical, aux petits drones et robots